Lecture 6 - January 26

Math Review
Relations, Relational Operations

Announcement

- Labl submission due in a week
+ Help: scheduled office hours \& TA
+ tutorial videos
+ problems to solve
+ Study along with the Math Review lecture notes.

Set of Possible Relations

- Set of possible relations on S and T :
- Dedicated symbol for set of possible relations on S and T :
- Declare that set r is a relation on S and T :

Example: Enumerate all relations on $\{a, b\}$ and $\{2,4\}$.

$$
\mathbb{P}(\{(a, z),(a, 4),(b, 2),(b, 4]\})
$$

$$
\begin{aligned}
& \{a, b\} \leftrightarrow\{2,4\} \\
& \mathbb{P}(\{a, b\} \times\{2,4\})
\end{aligned}
$$

$$
\begin{aligned}
& \text { Teparture }=\{\text { toranto, montrieal, vancancer }\} \\
& \text { Testīation }=\{\text { beijing, Seaul, penang }\} \\
& \text { airline } \in \frac{\text { Teparture } \leftrightarrow \text { Pestäncition }}{l} \\
& \text { takk: enumerate! }
\end{aligned}
$$

Relational Operations: Domain, Range, Inverse

$$
\begin{aligned}
& r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\} \\
& \operatorname{dom}(r)=\left\{a, b ; c, d, e_{3} f\right\} \\
& r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\} \\
& \operatorname{ran}(r)=\{1,2,3,4,5, b\} \\
& r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\} \\
& r \sim=\{(1, a),(2, b),(3, c),(4, a),(5, b),(b, c),(1, d),(2, c),(3, t)\} \\
& |r|=|r \sim| \\
& \rightarrow \text { algebraic properreps. }
\end{aligned}
$$

Exercise: Relate the domains and ranges of r and its inverse.
(1) $\operatorname{dom}(r)=r \operatorname{ran}(r \sim)$
(2) $\operatorname{ran}(r)=\operatorname{dom}(r \sim)$

Relational Operations: Image

$$
r \in S \leftrightarrow T
$$

$r[s]$ assumption: $S \subseteq S$

$$
(\mathrm{r})=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}
$$

$$
r[\{a, b\}]=\left\{r^{\prime} \mid\left(d, r^{\prime}\right) \in r \wedge d \in\{a, b\}\right\}
$$

$$
=\{1,2,4,5\}
$$

Exercises

- Image of $\{a, b\}$ on r ?

$$
\text { e.g. } v[\phi]=\phi
$$

- Image of $\{1,2\}$ on r ? . undefraed e.... $v[\{x, y\}]=\varnothing$
- Image of $\{1,2\}$ on the inverse of r ? $\longrightarrow\left\{a_{0} b_{2} d_{;} e\right\}$
- Calculate r's range via an image.
- Calculate r's domain via an image.
$r[\{1, a\}] \times$ undefred

$$
\underline{\underline{r}} \in S \leftrightarrow T \quad S \subseteq S
$$

	domain	r ange
Restriction	$s \triangleleft r$	$r \triangleright s$
fubtraction	$s \& r$	$r \triangleright s$

Relational Operations: Restrictions vs. Subtractions

$$
\begin{aligned}
& \mathrm{r}=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\} \\
& \{a, b\}<r=\{(a, 1),(b, 2),(a, 4),(b, 5)\} \\
& r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\} \\
& \checkmark \triangleright\{1,2\}=\left\{\left(a_{3}\right),(b, 2) ;\left(d_{3}()_{3}(e, 2)\right\}\right. \\
& r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d, 1),(e, 2),(f, 3)\} \\
& \{a, b\} \forall r=\{(c, 3),(c, b),(d ; 1),(p, 2),(f, 3)\} \\
& r=\{(a, 1),(b, 2),(c, 3),(a, 4),(b, 5),(c, 6),(d,-1),(\rho,-2),(f, 3)\} \\
& V \forall\{\underline{1}, 2\}=\{(c, 3),(a, 4),(b, 5),(c, 6),(f, 3)\}
\end{aligned}
$$

$$
r=(s \triangleleft r) \cup(s \not s r)
$$

Relational Operations: Overriding

$$
r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 5),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}
$$

Example: Calculate r overridden with $\{(a, 3),(c, 4)\}$
Hint: Decompose results to those in t's domain and those not in t's domain.

$$
\begin{aligned}
& \begin{aligned}
(r) \& \frac{\{(a, 3),(c, 4)\}}{t}
\end{aligned}=\left\{\left(d, v^{\prime}\right) \left\lvert\, \begin{array}{l}
\left(d, r^{\prime}\right) \in\{(a, 3),(c, 4)\} \\
v \underset{\sim}{(d, r) \in r \wedge d \notin\{a, c\}}
\end{array}\right.\right\} \\
& =\{(a, 3),(C, 4),(b, 2),(b, 5),(d, s),(P, 3),(f, 3)\}
\end{aligned}
$$

Problems (don't lak at the slides!)
(1) Rewrite the velational image $r[s]$
in terms of $\mathrm{dom} / \mathrm{ran}$ cad/or restrictös/subtractions.
(2) Rewrite the overriding $V \notin t$
in temus of dom/rand andor restrectors/subtractions ciollor set opections.

Lecture 1b

Review on Math: Functions

Functional Property $\left\{\left(\begin{array}{c}s \\ a \\ a\end{array}, 1\right),(b, 2),(\underline{a}, \vec{s}, 3)\right\}$

$$
\begin{aligned}
& \text { isFunctional }(\mathbb{C}) \underset{\in S}{\Leftrightarrow} \in S \leftrightarrow T \\
& \forall \underline{s}, \underline{1,}+2 \text { - } \\
& (s \in S \wedge+1 \in T \wedge+2 \in T) \\
& \Rightarrow \quad \text { each domain value to at most one value } \\
& ((s,+1) \in r \wedge(s,+2) \in r \Rightarrow+1=+2)
\end{aligned}
$$

Q: Smallest relation satisfying the functional property.
Q: How to prove or disprove that a relation r is a function.
Q: Rewrite the functional property using contrapositive.

